If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5x+23=23
We move all terms to the left:
x^2-5x+23-(23)=0
We add all the numbers together, and all the variables
x^2-5x=0
a = 1; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·1·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*1}=\frac{0}{2} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*1}=\frac{10}{2} =5 $
| 2g-3=3-19 | | (7(9+4)/9=9/s)=((1/s)+2/8) | | Y÷2+y÷2=31 | | (s(9+4)/9=9/s)=((1/s)+2/8) | | F(x)=5*3 | | 5.4=0.009x | | -4(7x-8)=-28x+32 | | (3x/18)-1=5/8 | | 1/4(12n-4)+n=-n-17 | | s(9+4)/9=9/s | | -16x2+76x+5=12x+5 | | x+6=2+2x | | -27=2y-15 | | s(9+4)/7=9/s | | 25+8t=12t | | s(9+4)/7=9/(7+s) | | 1/4(12n-4)+n=-(n+17) | | F(x)=20,x= | | 3x/18-1=5/8 | | (X÷4-3)=(x+8) | | (s/9)+4/s=9/(7+s) | | 4+2x=62 | | 7.3-n=7.9 | | 32-3n=48+n | | 63(x-10)=-70(x+9) | | (s/9)+4/s=9/(7=s) | | 9=j/9 | | 4x2=324 | | 3.7x+1.62=-22.43 | | 10x+45=x-81 | | 4n=-n+1 | | 7a-17=4a=1 |